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INTRODUCTION

t
i
|

For geodetic, gerdynamical, and astronomical purposes,
two basic coordinate systems are needed: an inertial system

and an earth-fixed system. These two systems are related
through precession, nutation, and polar motion.

In order to relate these two systems in a precise
fashion, we need not only highly sophisticated observation
methods such as doppler, lunar laser, and VLBI observations,
but also very accurate theories, which take into account the
eltasticity of the earth's mantle, as weil as effects due to
the liquid core. A clear understanding of this complex matter
is a prerequisite also for practical work in this field.

The present report is intended as a systematic review
which presents the basic principles in a rather detailed
manner and is thus suitable as an introduction even for sci-
entists with 1ittle or no previous knowledge of the field.

The report is restricted to those theories which regard
the earth either as a rigid body, such as Kinoshita's recent
theory, or as a purely elastic solid, such as McClure's work,
or as a body consisting of a rigid mantle and a liquid core,
the so-called Poincaré model. None of these models is fully
realistic, but each contains important features which form
a basis indispensable for understanding, and even for practi- ]
cally and numerically treating, a more realistic model con- ]
sisting of an elastic mantle and a liquid core. The consider-
ations of models of the latter kind, which is a complicated 1
and difficult subject, will be deferred to another report.

vi




Emphasis is on the treatment of an elastic earth on the
basis of Liouville's equation, leading to a systematic theory

of polar motion, precession, and nutation of various axes
(rotation axis, angular momentum axis, figure axis, and the
so-called celestial reference pole), and on the eigenvalue
problem for rotation, leading to a similar theory for a

i
!
i
!
i
.

rigid earth and for the Poincaré model.

vii
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1. THE TIDAL POTENTIAL

Precession, nutation, forced polar motion, and earth
tides all have a common cause: the gravitational attraction
of sun and moon. Therefore, the potential of this attraction,
the tidal potential, plays a fundamental role in all these

phenomena.

Consider the gravitational attraction of the moon
(the sun can be treated analogously) at a point P on the
earth's surface which, to an accuracy sufficient for the
present purpose, can be represented by a sphere of radius 2
(Fig. 1.1). The potential of this attraction at P is

G oy n -1
v o= 75 = Gy § -3 P (cosw) (1-1)

n+1

FIGURE 1.1. The tidal attraction




on expanding 1/1 into a series of Legendre polynomials
Pn(
are evident from Fig., 1.13 G 1is the gravitational constant

cos.,) (Heiskanen and Moritz, 1967, p. 33). The notations

and u is the moon's mass. We follow (Moritz, 1980, sec. 55).

The zero and first degree terms (n=0 and 1) do not
cause genuine deformations and are therefore omitted. The
dominant term is n=2 ; higher-degree terms are small and will
be neglected. Thus there remains

Vo= Ve o= GudsPicosy) . (1-2)
This spherical harmonic of second degree wiil, in the follow-
ing, be considered as our tidal potential.

Let us now express P-(cosy) 1in terms of the gegcentric
spherical coordinates of P and of the moon's center. In the
usual earth-fixed equatorial system the point P has the co-
ordinates (-+,*) where = = 90”°-5 is the polar distance of
P ,: denoting the geocentric latitude, and + 1is the geo-
centric longitude. Similarly, the moon has the coordinates
(p,h), where the polar distance is given by p = 90 - : ,
being the declination of the moon, and h denctes the Green-
wich hour angle of the moon, that is, the angle between the
Greenwich meridian and the meridian passing through the
moon's center. Contrary to astronomical usage, both * and
h are counted positively towards east (Fig. 1.2).

Then P.{(cosy) <can be expressed by means of the decom-

position faormula for spnerical harmonics (Heiskanen and
Moritz, 1967, p. 33), and we obtain

G far e o sransbld
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FIG. 1.2. Coordinates of P and of the moon.

with the zonal part

Vaog = Gu I P..(cos8)P.g(cosp) {1-4)
the tesseral part
Vop = % Gu Q% P-y(cos3)P-(cosp) cos(+-h} (1-5) ;

and the sectorial part

1 : -
Vi = 17 Gu %? Prsf{cos?)P..(cosp) cos2(.-h) . (1-6)




"nhe Lz2gendre functions are given Dy the weli-knoan Exoressions:

P -{cos-) = P {cos3) = cos - - 5

~o Gl

P oo{cos~) = 3sin-cos, P {cos:) = 3sin-:

The coordinates of the moon, p and h, are functians
of the time since the moon moves along its orbit. Tnerefore,
eqs. {1-4} to {1-6) can be considered spherical narmonics in

and - with coeffir‘ents that are functions of time. de
expand these functions into trigonometric series and write

the result in the form {(Doodson, 1922; McClure, 19

-~ ~ v,
Py P ‘;‘2).

Vv = Vv + v + v ,
N GH1 30
= \ )
v = —_ -, P = (] ~80
am C c nm(COS ) (1-8)
i=1 2 (G
A cos; b mo+ (nemin
: J A -
nmid '_ nmijd nmj i ) )7_

Here n=2;, m=0,1,2; the index d numbers moon (d=1) and sun
e

masses of moun and sun, and <c¢. de-

vd=2) - denotes th
notes tne mean radiil of the lunar and the solar orbit {con-
sidered with respect to the earth). As an example, we write

(1-3) explicitly for the case m=1, which will be of parti-

cular importance:

“ (1-9)

e




since «cos{u+-/2) = -sinc . Omitting the subscripts

in the coefficients and considering the effect only of
the moon {(or only of the sun) we have

GLAd . -
voy = = —— a-P-y{cos~): A sin{., .t +
2 : A LR ;

c 3 g

p

+

[}

“

This simpler expression will frequently be used later.-
We remark that the arguments are linear combinations
{with integer coefficients) of

S ..., lunar mean longitude,
h .. solar mean laongitude {not to be confused
with the hour angle as used above),

Do, mean longitude of lunar perigee (same re-
mark ),
N longitude of the mean ascending node of the

lunar orbit,

Py +ooe- mean longitude of solar perigee,
T el local mean lunar hour angle,.
that is
v ..t + 8 mi = n;t + Nn.S + n.h +
nmjd nmjd . :
+np + neN o+ onep (1-1

(92l

(Melchior, 1978, p. 33, McClure, 1973, p. 95).

p—

15 Note that the sum © is an infinite series!

11-10)
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Well known are the tidal developements of Doodson (1922,
and Cartwright and Tayler (1971); see also (Cartwright and
Edden, 1973). A new developement has been given by Heikkinen
(1978).




2. ROTATION OF A RIGID BODY

The basic equation for the rotation of a rigid body
is very simple:

dH _ N
a—f-E . (2'1/

i the derivative of the angular momentum H with respect to

E ' time t equals the torque L ; both H and L are vectors,
which is indicated by underlining their symbols.

This equation holds in a nonrotating {inertial) coordi-
nate system; in a body-fixed coordinate system {which rotates

with the body), its equivalent is

W)
ps =

+w v H =L . (2-2)

et

@
ot

Here 3/5t denotes the time derivative in tnhe body-fixed
system and «» is the rotation vector whose direction coinci-
des with the instantaneous axis of rotation and whose magni-
tude is the angular velccity « of rotation; the cross (-)
1 denotes the vector product of two vectors. These equations
can be found in any text on mechanics; cf. (Synge, 1960).

Eq. (2-1) is fundamental for precession and nutation,
which is the motion of the earth's axis in inertial space;
! and (2-2) is basic for polar motion, which is the motion
of the earth's axis with respect to an earth-fixed coordinate

system.




———

The velocity v of a point of tne body 15

(2-3)

v = o

%

x denoting the position vector of the point. This relation
is substituted into the equation defining the angular momen-
tum H

Ho= [7ix < vdM (2-4)

in which the integration is over the body, dM being the
mass element. The result is

=104 (2-5)

where C is a tensor (a 3x3 symmetric matrix), the
inertia tensor. The elements Cij of the matrix C are

given by the formula

s ,

Cij = j,j(xkxkuij xixj)dM . (2-6)
using index notation: i,j,x run from 1 to 3 , x; = x,
X =y, x» = z are coordinates in a body-fixed Cartesian

System, 5ij =1 if i=j and 0 if i#j (Kronecker delta)

and summation over repeated subscripts in a product (x in
the formula) is prescribed; cf. (Jeffreys, 1931).
Equivalent but somewhat more explicit is the form

3




TR T

Y
J -0 -D
% KX P
C = -0 J -0
hd Xy .
-0 -D J
<2 Yl 2

where the diagonal elements are moments ot inert a, «.

= Sy > . I
Je = ooistys vz )d

and the off-diagonal terms are products of 1nertia, e.

D = /[xydM

xy

If the principal axes of inertia are chousen &s

nate axes, then the tensor C assumes diagonal fora:

A 0 U
c=.0 8 0, |,
0 0

A,B,C being the principal moments of inertia.

In this case, (2-5) vreduces to

3.,

cuurdg. -
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we transform the first and second equation into
- + T = s
g
L)-l.;;
w2 = ZL.J. = y
of which the solution is
wy = AICOS(‘JEt + '1) N
. '2-13
sy = :s1n(:Et +oy) /
With constants ¢« and From (2-16) we have
s1% + 2= = 17 = const. 2-17)
which is the equation of a circle. Together with .=const.
this means that the rotation axis describes a circular cone
around the axis of symmetry (Fig. 2.1,. The angle of aper-
ture 15 abcut 0.2"; the period T 15 obtained from

FIGURE 2.1. Free polar motion tor

rigid eartn.
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To= S = x5 i 305 days . (2-13)

m

This Euler period would hold if the earth was a rigid body.

Tne fact that tne actual period, tne Chandler period,is about

430 davse. inarcates that the earth is not rigid.
Regarding terminology, the constant g defined by
(2-14" will he called the Etuler frequency; it will play a

basic role throughout the present report.

Strictiy speaking, is an "angular frequency", where-

as the name "freguency" is usually reserved for the quantity

ol
e

f
=) —

anwever, we shall consistently speak of frequency in the sense

of "anaqular frequency".
The coefficient « in (2-16) 1is cailed amplitude,

ind . 1s the phase.

4.
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3. THE LIOQUVILLE EQUATION

The basic equation (2-1) ,

a
P ot

=L, (2-1)

(0%
ct

is really quite general. It holds for the rotation of an ar-
bitrary body, rigid or not (Truesdall and Toupin, 1960, p.531).
The underlying coordinate system is an inertial system which we
denote by XYZ or X:X-X:.

In a rotating system xyz or x,x-x: which is attached
to the rotating nonrigid body in a way to be explained later,
the angular momentum equation takes again the form (2-2),

but (2-5) is generalized:

H=C. +h (3-3)

where n is a relative angular momentum defined Dy

= [fx « udm . (3-4

| =

Here

|c

js the velocity with respect to the system x.x:x:,

P PUNRPEEY W




which is related to the velocity v with respect to the

inertial system X -X-X; by
V=Xt U (3-5;
fquations (3-3) and (3-4) are readily obtained by

substituting (3-5) into the defining equation (2-4).
The inertia tensor C is again given by (2-6j.

The meaning of these equations is easily understood.

‘ I[f the earth (our rotating body will always be the earth)

is not rigid, then there is no coordinate system at which
all particles, of which the earth is composed, are at rest.
Thus they move with respect to our system x;x;x; with
velocity u , which is considered small since it is zero for
a rigid body. Thus (3-5) differs from {2-3) by a non-
zero u. This relative velocity u causes the relative
angular momentum (3-4) to be, in general, different from

k zero.
E By substituting (3-3) idinto (3-2) we get
G (Coovh) ww o (Cuoxh) =L, (3-6)
ahich is called the Liouville equation (Munk and Macdonaid, 4

1960, p.10). This equation will be fundamental for the mathe-

matical description of polar motion for a nonrigid earth.




It is now of basic importance that the axes x-x «.
can be chosen such that h=0. They have the property that

[7]u~dM = minimum 12-7

{Jeffreys, 1970, sec. 7.04) and are called Tisserand axes
(Munk and Macdonald, 1960, p.10). Then the basic equations
are formally the same as for a rigid body, eqs. (2-2) and
(2-5), but note that now the inertia tensor C, eq. (2-9;,
will be a function of time since the shape of the body will,
in general, change with time. In the following we shall al-
ways use Tisserand axes.

This is convenient as long as one disregards relative
motions such as oéean currents and winds, as we shall do.
For the consideration of such effects see (Munk and Macdonald,
1960, p. 123; Lambeck and Cazenave, 1973, 1974; Capitaine,
1980; Lambeck, 1980).

Linearization. For Tisserand axes, the Liouville

equation (3-6) may be written

2 (Cw) +wx (Cw) =L . (3-8)

We shall now linearize this eguation as follows (Munk and
Macdonald, 1960, p.37; McClure, 1973). The inertia tensor

is written

dtaer .

C:C+e (3-9)




wnere

Thus,
| whose
Ixes,

pal mo

tensor

earth

where

corres

Around
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A 0 0 i C- c. c:
i
Cr = ' 0 A 0 ; s [ o o C-= (3-10)
; !
0 0 c Cis  C_ C:

C, corresponds to the model of an undeformed earth
principal axes of inertia coincide with the coordinate
which has rotational symmetry (B=zA)} and whose princi-
ments of 1nertia A and C are constant in time. The

c takes into account the deviation of the actual
from this simplified model.
The rotation vector . is written as
VRN e (3-11)
s = 0 (3-12)
ponds to a rotation with constant angular velocity

the z-axis and

m]_
= m. (3‘13/




e de N

expresses deviations of the rotation axis from the z-ax13

(m. anc¢ m:) and variatiocns of the rotational speed . m . g
doth ¢ and . are considered small quantities whose g
squares, products and higher powers can be neglected. H

We sudbstitute (3-9) and (3-11) into 3-3, and

retain linear terms only. The result 1g

L'. = Af_m1 + (C‘A)‘:"inv + ‘.Cv.: - .‘\C> -

Lo = Aum. - (C-A)asm: + ¢ + vc. ., {3-143 :

L3 = + C: s ‘
the dot denoting a time derivative ot

[t will be very convenient to combine the first two

equations by using complex notation, putting

| m=m. + im. ,
C o= ci:o*icy 3-15;
L= L. + L

f where i- = -1 (note the difference between the complex num-

ber L and the three-vector L, and between the complex

number ¢ and the tensor ¢ !). The result is

irn fact, by substituting ({3-1%)., performing the compiex

multiplications and separating real and imaginary parts, we

qet back the first two equations of (3-14).




"
' 1
i
|
Eq. (23-1s; can be written in tne form .
¥
i mo= i (m-L) Z-17
; X
i
|
‘ where
!
| . C-A I
i LT e Ml e
[ L A
l is i1f9asn tne Buler freguency {2-14, ‘we may identify tne
constant . in sec. 2 with the present . }; and
i Lo, e it
S .- 1 3-13
(C-A) - C-A {C-A)7 ‘

Tne auantity . is called tne excitation function because

it causes a deviation of polar motion from the simple case
2t free rotation of 3 rigid earth considered in sec. 2, for

An1ch . =J.

f i¥ the functicn . is known, then ({3-17% <¢an be sgi-
I ved for m, obdbtaining tne components m. 2and m_ cnaracter-
izina a deviation of the earth's rotation axis from tne z-axis,
“nat 15, polar motion. Similarly, the third equazion of {3-13
anich can be written as
moos B E 3-20

can bhe solved forownm to get wvariations of the speed of ro-

fation, or variations ot the lengtn of day.

e LS s, onsit s _ it i 1S it * Nk 3




I In other terms, polar motlon 15 tne variatisn ot sz
direction of the rotation vector ., and n chnarecTmerizes
variations 1in the lenath of .. [t 15 very remarsavla "t st
both phenomena are separated in the linear gpproximati. o,

the sequel we shall restrict curselves to polar motion ahto
is more interesting and less simple.
We shall also linearize the expression {(3-3), wnic¢r

for h=0 reduces to

Ho=C.. -l

The substitution of (3-9) and- (3-11) yields, on neglect!

o
ul

terms of second and higher order,

x
I
pel

>
3
’..
o]
(e
'
ro
o

where

x
it
T
+
T
-
(&%)
]
~y
€

and

L H, = C. + Cf..’m’) + TCh

oy

The division of the equatorial components H. and H- of

the vector H by its length, which approximately is <7, \
gives the equatorial components h, and h_ of the unit J

b diia




vector i/

[jus

h: =

(‘;‘I
o

These quantities define the
tum axis (the direction of

way as m- anda m_  define

axis from the z-axis.'

Finally, we consider

of maximum inertia for the deformed earth,

cipal axis of t¢he tensor

axis of the tensor C.}.

axes of a symmetric matrix

{3-9) we qget

or in complex notation

fro=»f «if = ‘%ﬁ

(McClure, 1972, Appendix

)

]
0o
A

deviation of the anqular momen-

H)

from tne z-a«is

I

in *he

Sane

the deviation of the :gtation

the

(

1S

).

figure axis which 15 tn

that

is, a

€ 3ax1¢

prin-

the z-axis as a principal

straightforward;

The quantities

f.

for tne

and

1

The determination of the principal

tensor

are equatorial components of the unit vector of the figure

axis.

*) Since the relative angular momentum vector

(3-4)
the letter h 1s free for our present new use.

is zero,
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4. FREE POLAR MOTION FOR AN ELASTIC EARTH

If the earth rotates about an axis which deviates
from the axis of symmetry, there occur centrifugal forces
which tend to distort it, and an elastic earth yields to
this distortion (this is similar to distorting forces
acting on an unbalanced wheel). It is well known that this
distortion introduces products of inertia c.. and c_.
which are proportional to the deviation of the rotation
axis, m, and m: (Jeffreys, 1970, sec. 7.04; Munk and
Macdonald, 1960, p. 38). In complex notation, using (3-15),
we have

c = E (C-A)m , (4-1)

S

where k is a Love number well known from elasticity theory,

and kS is an abbreviation

K= 3G(C-A) (4-2)
s as:2

and bears the somewhat unfortunate name of secular Love
number (Munk and Macdonald, 1960, p. 26). Here G denotes
the gravitational constant and a is the earth's equatorial

radius or, to the same accuracy, its mean radius: a # R =
= 6371 km. More about the constants k and will be said




at the end of this section.

This quantity (4-1) is to be used in the excitation
function (23-19). In the case of free rotation to be con-

sidered in this section, there is no effect of sun and moon,
that 1s, no external torque L. Thus (3-19) reduces to

N ic _k (m - im, (4-3

7T T-R 0 (C-RYE k =) 7 g o L
the subscript "rD" denoting “"rotational deformation", and
(3-17) becomes

mo= i-.m (elastic earth) . (4-4
Here

-
c T Tk 1 +E “TE (4-5,
E‘““T

is the Chandler freguency, the name will be explained below;

note that T is the Euler frequency (2-14).
The complex equation (4-4) splits wup into two rea!

ones:




[aN
(9]

which have the same form as (Z2-15) wnicn, in our presens

notation, could be written as

h = ic_m (riqgid earin; . ra-7

With the numerical values

k = 0.30, ke = 0.96 /dimernsionless)

s
'
[g¥]

we get from (4-5)
3.5 0.7~ , (3-3

which means that the periocd (2-18) 1is lengthened by the
factor 1/0.7 = 1.4 . The multiplication by this factor bring:s
the Euler period of 305 days (which would nold far a rigid
earth and corresponds to the Euler frequency -E) zlose to *ne
actual Chandler period of about 430 days, which corresponds
to the Chandler frequency

The solution of (4-4) may be written in comple. form

as

with an arbitrary (complex) constant m.. This is immediate-
ly verified by substitution into (4-4), which again shows
the advantage of complex notation. Of course, (4-10) s
equivalent to {2-16), with 1 repiaced by
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1

I'n tne opinion of the dresent author, Suln o an IDproacn
s inappropriate. he theory ot defurmatiuons, 0f an elastic
earth mak=2% no difference botween defourmations which 3re
constant 1n time and for those which ire temporaliy vacrias s
far botn, the Love nuymber k 15 relevent, Lven for eartn
models witn a ligquid core, fur which 15 4 <“1:ght deperdence
of &k on frequency, give for constant deturmations a &
tha*t is ciose to 0.3; «cf. {(Wahr, 1979,. 12 would require
an earth model of a completely different rhenlugy to et {ur
constant deformations a k close to 1, 1f this 15 at ali
possible and physically meaningful. No such model has neen
given so far,

Since geodynamical computations should be based on a
well-gefined meaningful modet, it is strongly advocated to
use a2 k following from such a model (Molodensky, 1961;
Wanr, 1973). No physically observable error ‘s introducea in
this way: even if the secular Love number were "true" for
constant deformations, this would only imply a reference
model of a slightly different flattening but not change at
all the observable physical situatior.

Therefore we shall use k to characterize the elastic
response of the earth also for the constant part of the de-
formation, restricting ks purely to 1ts use as the abbre-
viation (4-2) without attempting a physical interpretaticn
of kS in the sense of an elastic or nonelastic response.




We finally note tnat, in a rigid pody, tnere are no

ciastic deformations and the shape of tne body and 1ts gra-
vitational potential YV do not change. Hence V=0, so0
that (4-11% ‘implies

(4-12

k =0 for a rigid body.

for a rigid earth can be obtained from

Therefore, formulas
k=0.

those for an elastic earth by simply putting
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_ L . iTp ettt
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B = -3 A -l
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Tidal deformation. The products of inertia.
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tre relevant potential is
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where

and ks is defined by {1-2); 8T 19 given by +5-11,.

The physical meaning of ,; and - snould be L
carefully kept in mind. The funciion #epresents tne 1
torque exerted by sun and moon. It 1s tge same for a rigid

and a nonrigid earth. The function .15 Caused by elastic
deformation; it therefore depends on the Love number w®  and
is zero for a rigid body, in accordance wrtr  f3-12). Thus
- represents the "direct tidal efra.t” p; The in-
direct tida) effect™, and the sum
- k -
P = + v — cow RN
T L TD ;<1 K )5 '5-27%
expresses the total effect of sun and moon.
Solution of the basic equation. in view of {5-2: anqa
(5-21), the basic equation {%-1) may bes writfen
ho- 17E(m - JRD) SR IR 5-202,
Using (4-3) and (4-5), *this can be brought into the form !
mo- is.om o= - =
C 1 kK SR T
_‘_+ —_— <4
ks
(5-23)
TE - k 3 O GV
= R W ey /1 + Fam ——"“\B e i ) 2
, Kk = N « .
“"lf— 5




Tne solution of this equation is civen Dy

o
9]
'
-
b
T
+
2
1
o
£

as can be verified by substitution. It contains two constants,
whicn are the real and the imaginary part of the complex con-
stant my; , and is thus the general solution of (5-23).

The solution (5-24) consists of the solution of tne
homogeneous equation (4-4), corresponding to free motion
without external forces, and a term representing the effect

of lunisolar perturbations.



6. POLAR MOTION : OTHER AXES

Eq. (5-24) describes the movement of the instanta-
neous rotation axis, which is characterized by the compliex

number m = m;+ im, where m; and m. are the equatorial
components of the unit vector of the rotation axis. Similarly,
the angular momentum axis is characterized by the complex

number h given by (3-25), and the figure axis is described
by the complex number f given by {3-27).
Eq. (3-27) gives the figure axis:

C :
f =CTA' ’ (6-1,
where ¢ = C,, + iC,3 15 a complex combination of products

of inertia. By (3-22), (3-23), and {3-25) we have

O
(]
—
(@2}

'
[aS]

_ A
h = T m +

The combination of (6-1) and (6-2) finaily gives

_ A C-A AP
] h—t-m"’—t——f .\63,

for the angular momentum axis.

For the resulting formulas we shall recall the notations
for a few constants and shall introduce a new one : the
secular Love number (4-2)

3G(C-A)

a®




[o%)
[e)]

the Eulerian frequency (3-18)

s,= =L (6-5)
the Chandlerian frequency (4-5)
-5
Yo T ‘—%§7T g o 16-6,
l+p —E =
the nutational frequency (5-20)
= 5 - 6-7
2 ] (6-7)
(the name will become clear in sec. 7), and the factor
pe kI > o
" K__ [ . - JE 1
Tyt T e T TR T (6-8)
J 5 S _E | AR | o Vo
uﬁ+uC L+ ks L ¢ L+ ks " |

Using these notations, we can represent the polar motion
p of various axes. From (5-24) we get

C-A Si(w_teil) .
P =m=me © ‘Eﬁ— . Ble L(”J 5 (6-9)
e ;

’
p

for the polar motion of the rotation axis R . The figure

axis F is obtained from (6-1), where ¢ i3 the sum of




e+ et e

(4-1) for rotational deformation and (5-17) for tida! defor-

mation:

u
w
e
e

(6-10;

Finally, these two equations are linearly combined by (6-3) to
getthe polar motion of the angular momentum axis:

- K
togt | g C-A -~ " kg LB e tle teml)
¢ 31+ k_ -

(6-11)

with

my (6-12)

These formulas are i1ilustrated by fig. 6.1, which shows
the plane tangent to the terrestrial sphere at the point 0
representing the z-axis and, at the same time, a mean position
of all %hree axes. The other points designate the rotation axis
R, the angular momentum axis H , the figure axis F , and
their force-free counterparts R,, H, and F,, as given by
*he fi.st term on the right-hand side of (6-9), (6-11), and
6-10) . In order to get a feeling for the orders of magnitude,

we note tnat
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FIGURE 6.1. Polar motion for an elastic eartt
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Let us first consider the free motion only. The points

R- and H,; describe concentric circles whose radius 1s on
the order of 0.2" which corresponds to 6m . Both points
are very close to each other since h, %2 m; by (6-12) and
(6-13); theré is HoRy 2 2cm. The point O <corresponds to
the figure axis in the undisturbed case. Since the axis of
rotation does not coincide with the figure axis, the rotation
of the earth produces a nonsymmetric deformation (sec. 4} which
causes the axis of maximum inertia to shift to F- . The first
term on the right-hand side of (6-10) shows that O0F 3 2m
since k/kS £ 0.3. The prints R;, Hy, and F, 1lie on the
same radius and slowly rotate together around O0; the perioa
is the Chandler period of about 430 days.
So much for the free motion. The attraction of sun and -

moon causes forced motions which are represented by the second ﬂ
term on the right-hand sides of (6-9), (6-10), ana (6-11). The
instantaneous pole of rotation, R , describes a near-circular

closed curve around Ry; we have R-R 2 60 cm. A similar

curve is described by the angular momentum pole H around H..




L aading cog

— e e

since 1 - k/kS £ 0.7, we have H,H = 40 cm. Especially
remarkable is tne motion of the pole F of the figure axis:
it describes a quasi-circular motion around F, whose radius
is by (k/k_)A/{(C-Aj} = 100 times larger than OR,;, namely
about 60 mbl From (6-3) it is clear that R, H, and F 1lie
an a straight line.

Since - = .+, the period of these forced motions is
on the order of 1| day; we therefore speak of diurnai polar
motions.

We also point out the evident fact that the motion of
the various axis for the case of a rigid earth can be obtained
by putting the Love number k = 0 in these formulas. The main
change in Fig. 6.1 1s that, for a rigid earth, the points F
and F- will coincide with the origin 0 and the radii R-R
and H-H will be almost equal.

A final remark is in order. The actual free polar motion
is much more complicated than the simple circular model consider-
ed here, for a variety of reasons, not all of which are well
understood. The free motion cannot, therefore, be adequately pre-
dicted by an analytical model and can only be determined by
observation (International Latitude Service, International Polar
Motion Service, Doppler, Laser,VLBI). On the other hand it -
appears that the lunisolar (forced) motion of the pole can be %
predicted well,




7. PRECESSION AND NUTATION - Aniiiiw ooy

Tne starting point s our bHa,:. o, 1

aH

— =1 .
dt

This equation, which states that the *time der:vative of the
angular momentum H equals the torcue L , 1+ valid for a

nonrotating (inertial) system £ ¢ Y.. Tni: sy ystem is speci-

fied as follows (Fig. 7.1). The x-x - plune 15 tne ecliptic

FIGURE 7.1. The angular momentum axis in space illu-

strated by means of a unit sphere,
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Tni: equation is differentiated with respect to time. we *treat

2! as a3 constant since, to a high accuracy,

H = C = const., PT-z

cf. the third equation of (2-11). The first two componen=s
of {(7-1) are then

C.(-cos* _sins = = sin* cos. . ' = L . .
i Hon H H'H X

~1
'
=

C . (cos=+ cos, + = sin. sin,
H { I3

1 4 ) =L ’

H7H X2

where L and L~ are the X, and X, components of the

[

torque

AL
The solution with respect to = and vy gives

A
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as before (o0-70 . Using L. d 0 we thuL, ogqet Fraam -3

C-A ~ . o .-
<% 1, .s¥n 7 =1 S B e -1
1 Y H v N

Before integrating tnis enuation, ~= must aistinguisn

the cases .. =0 and . # 0 . The “ r v ase ali0 colur,
sTnce .15 a frequency that appear: ¢ too e ei0pement O
tne tidal potential /1-8:. Let us number = “reduenc s

in such a way that - = 0 correspord, ° Tt uengy

Tnen “7-13) can be split up Yy distingui.ncn tne cases 5 o= 0

and 3 # 2 {1t may be shown that :

, . C-& C-A . - R
-+ i, sint = -1 B - 1 T &
Y H H "
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Tnis equation can he immediatel,; intearated since we may 1ssune

5in-_  an *tne left-nand side to be constant witnout loovsing
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and precession and nutation refer to 1 nert oAl o T : :
00th systems are rotating relativel, b o tner Lot ' ﬂ
velocity ;
Since the angqular motions of sun and maon are :
smaller than tne rotation o7 the eartr, as ra.e
de also know HMelchior, 1372, n.33 “rni% <ne “rgal sorctry
is symmetric with resoect to LEL US 0D DOS1Tive Gng -
gative subscript: 1n such a way tnat 3 and -0 alyay. dencte
a synmmetric fTrejuency nailr
R T-le
Then, two symmetric frequencies . and _ qive tns i1ame
nutational frecuency ~_ tonly tAe sian of the ccef . crents
!
will be different).
[t 1s clear that the sidereal ftrequency = produces
precession. The principal nutaticon component comes “rom an
that corresponds to the motion of the lunar node. [t 935 3
period of 12.65 wvears and amplitudes 'n lanagitude {1.e., n
o 17.2" and 1n obliquity (T.e., in joof g2 The tida’ .
effect of thnis wotioun s insignificant, but in view of the sma’l-
ness of ¢ , the corresponding nutatignal coefficient, proport-
tonal to B /. by f7-14,0 15 greatlyv maqgnified. Other periods
ara a year fsun poand a montn fmoon) and tneiy multiples.
Generally, we see that the [oefficients in proceszion ana




nutation figuring in {7-14) are simply relateq fto tre coeffi-
cients of tne tidal potential, nameiy through (5-14). The
fact that precession (as well as nutation) is proportional

to the constant

H T ——— {7"17/

makes it possible to determine this constant. It is called
dynamical ellipticity and is of basic importance for physical
geodesy (cf. Heiskanen and Moritz, 1967, p.339).

The relation between precession, nutation and tidal
potential has been studied in particular detail by Melchnior
(1971, 1978).

Finally we point out that precession and nutation of
the angular momentum axis depend only on the lunisolar torque
and not on the Love number k . Therefore, the formulas (7-14"
are the same for a rigid and an elastic earth; cf. also
(Fedorov, 1963, p. 16).




8. PRECESSION AND NUTATION : OTHER AKES

Of the three axes considered in sec.6 : the instanta-
neous rotation axis, the angular momentum axis, and the figure
axis,we have treated the spatial motion of the anqular momen-
tum axis in the preceding section. The spatial moticn of the
remaining two axes will be studied now. As we have seen in
sec.6 , however, the instantaneous figure axis performs, in
the case of an elastic earth, such a large daily motion with
respect to the earth's body (about 60 m) that it is of 1itti

18]

practical use. Much more useful 1is the z-axis which corresponds
to the figure axis of an undeformed earth and, for a rigid earth,
coincides with the figure axis. So we shall study the motiaon
of the z-axis and of the instantaneous rotat:on axis, as well
as the so-called celestial pole.

[t will turn out that the precession of different axes
is the same, and the nutation nearly so. The very smail differ-
ences between the nutation of the angular momentum axis and
that of other axes are sometimes called Oppolzer terms (Wooiard,
1953, Kinoshita, 1977).

Motion of the z-axis. We again employ our usuail two

coordinate systems : a "space-fixed"” inertial coordinate system
X-X-X, as specified in the beginning of sec.? (cf. Fig. 7.1°
and an "earth-fixed" system x;x-x: introduced in sec.2. In

the latter system, the axis x, = z corresponds to tnhe fiagurs

axis of the undeformed earth, andit is a Liouville axis, the




equation of motion taking the simple form (3-8). The z-axis
g n .

is, tnerefore, also called a mean Tisserand figure ax«is. The

K-X. plane is the ecliptic, and the X, axis represents the
vernal equinox (both at a fixed epoch). The «x;x; ©plane re-
presents the equator (more precisely, the mean equator of fi-
gure), and the x; axis corresponds to the Greenwich meridian
(more precisely, to a conventionally assumed fixed direction
close to the Greenwich meridian). ‘

Since we are concerned only with directions and rotations,

the origins are of no interest here; we can for the present pur-

pose consider both systems geocentric.

The relative orientation of the x.x x. system relative

to the X, X.X. system can be given by the three Euler angles

FIGURE 8.1. The basic Euler angles.




,7,u defined as in Fig. 8.1. The quantities SN

similar, but not identical, to the angles . - . of

Y L}

t: 5 i

RS

Fia.

7.1 : now the pole is the z-axis and not the anqular momen-

tum axis. We get the system «:-x x. Dby rotating the s5/3

]

X1%X->X3 first about the 3-axis by the angle . |, until i

coincides with the node N (which 15, of course, not e-
the same point as N in Fig. 7.1), then about the noda:
by the angle =+ , and finally abpout the 3-ax15 by the an

The angle = is the longitude of tne node, -~ r
sents the obliquity of the ecliptic, and : 15 an angi=z

that measures the rotation of the earth. These Euler ang:

are frequently used in physics and astronomy; note, Nowe.

that almost every author uses a different definiticn of
We follow (Plummer, 1918) and (McClure, 1973}.

The components of the rotation vector . [wnicn
not in general coincide with the x: = Z axis!} are aeno
Dy o1 ,wcsws Compared to (3-11), (3-12% and (3-15; we

3

wy = LM, Ny T oAMa, oy o= L lsmy)

e M

Tl

+

act

tea

They are connected to the time derivatives of the Euler anaies

by Euler's well-known kinematical equatiagns:
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cf. (Synge, 1360, p.23), but note the different definition
of Euier angles.

The complex combination of the first two eqguations

gives
R S S S 1:sino) , 13-3)
whence
+ 1,510 = —ei“(, + 1L
= —eip.(m + im._ ),

by (3-1}) , or briefly, using (3-15)

This eguation is of basic importance: it relates precession
and nutation, as e«pressed by the Euler angles . and - , to¢
the polar motion of the rotation axis, m

The angle » measures the earth's rotation. Since thne
changes of - and 1 are very small, it is a suftficient ap-
proximation to put, similarly to (7-10),

Then we can substitute m from (6-9) into (8-4) to

obtain

ahath
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This equation is very similar to (7-13) and 1s integrate: 17

7

the same way, with the result

. . . . (st .
A2 o+ 149sins = 1 fr m-e - 1 - B t -
o )
+ Eié T Be r
L ’ v . (-7
1Eo
where, in analogy to (7-14), »: and . are the difference
between the instantaneous values of - and . and some re-

ference values.

This equation is very similar to (7-1d). In fact, the
precession term is the same, and the nutation terms only di*-
fer by the factor < which is very close to unity by (6-38"
and (6-13). An important difference 15 the presence of tne first
term on the right-hand side of (8-7), which originates from
free polar motion.

This free motion term has a nearly diurnal frequency,
since i is very close to the sidereal frequency. The
forced motion (lunisolar) term, on the other hand, is long-

periodic, the principal periods being 1B.56 years, a year,




ind a montn, as we nave mentioned in Sec. /.
This 15 in marked contrast to poiar motion wnere the
forced part 1s nearly diurnal and tne free moution being long-

periodic witn the Chandler period of 430 days.

"
:
To repeat, “« and ., in [(&-7) represent precession
and nutation of thc mean Tisserand figure axis. ' |

Motian of the rotation axis. Let - and ~-_  De the
Zuler angles of the rotation axis, defined in analogy to tne
definition of - and . for the anguiar momentum axis in

wh
T
Oy

.7. Tnis definition is shown by Fig. 8.2, where R denctes
the rotation axis and “eguator of R " corresponds to a plane

normal to the rotation axis. We also introduce tne differences

FIGURE 3.2. The rotat-.on ax1+ R an space 1llustrated

an o o the it oSpnere .




Greenwich Vx

FIGURE 8.3.

!

Direction difference between rotation axis

R and x3; axis z , illustrated on the

unit sphere

{above)
(below).

and on the tangent pla-
ne at z
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= ./R - Y = R - (8_8) §

between the Euler angles for the rotation axis and those for
the z-axis as considered in (8-7).
Fig. 8.3 shows that - and (-%%sin3) are related

to the polar motion components m;, and m:- by a plane ro-

tation, which 1s best written in complex form:
e

C - R O foon
+ id,51n4 = -1me = -ime 18-3

where m = m, + im- as usual. Again we substitute !6-9) and

‘ obtain
. L+ 7T., €
o+ iousine = o-im e C +
C-A - -1 (A | \
v LB e g tre (8-10
A o 3 j
]
4 Tnis is added to (3-7) and g1ives
. o Ly +yu Yr
v v, - 2 = - - . ~
a + T,,Ro1n 1 e mye C +
C
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The equation is very siymilar to /=14 and (3-7:. 23:'n, .
the precession term is the <ame, and the nutation coerficirent, i
nearly so. Again, there 1s a term due fto free polar mot,on =ne f
first on the right-hand side) which, however, 15 much smailer
tnan the free motion term 1n (3-7). !
The celestial pole. Free polar motion cannot be ad-

equately modeled in a simple mathematical way; the Circle

mye " C

around 0 with radius OR- (fig. 6.1) 1s valid only for an
ideally elastic earth. In reality, the polar motion curve 1is
rather irregular and can only be determined empirically; cf.
(Mueller, 1969, p.83).

On the other hend, lTunisolar effects can be predicted
well, both in polar motion and in nutation. [t 1s, therefore,
appropriate to refer calculation of precession and nutation to
an axis which is not affected by free polar motion. This ex-
cludes the rotation axis (8-11) and the z-axis (8-7), but lea-
ves the angular momentum axis which does not contain a free
motion term in nutation by (7-14).

An inspection of Fig. 6.1. shows, however, that the in-
stantanecus angular momentum axis H shows a forced nearly
diurnal polar motion of radius 40 c¢m around H. . If we wisnh
to have an axis which not only is a suitable reference for pre-

cession and nutation, but also is relatively stable with respect
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Thus, by “=-120, the polar moion of contann "
*orced Dart and, hy JH-1RY 0 Pt onutation Lontaing o foed
23r* 20tn missinag part, would nave nad a nearly 40 grns
pericod as we have pointed out 3n adove. Zotho omortion are
thys Jptimally smooth.

Furthermgre, C = H shares with the angular moemen-
tum axis H the property that Tts nutatiun 5 anaiy
predictable since it does not contain a fres fLerm wnll
w2uld be accessible only afterwards hy obsevvation,

For these and other reasons ibLeres . 14748 Leicn
Mueller, 1973), it appears that € 1s tre hest candid
an appropriate definition of a celestial reterence Sol
its Genera! Assembly in Montreal in 19740 the Interng
Astronomical UYUnion has, in fact, adopted as the o
ceiestial nole of reference.

we finally note that, for m = {0 | tne expresiion
2-7 and /3-15) coincide. Eq. {(n-10} shows tnat for 3
tody (k=0", also f = 0 in this case, 50 tnat tne i3
14%s remains at the origin of polar motrun. Thus. for
of a riaid earth and in the absence of nolar mot:on
generally!l}, tne celestial pole coincides witn the 5.
9¢ the finure a<is. Therefore, the direction orf fne o
nole nas 3lsc been calied "figure ax' =" Tni. untortan
terminology “Atkrnson., 19/9) has caused cons1deranic o
as described by Mue'ler 12307,

[€ the earth is elastic (oyen witr a ligquid Core
poclar motion 15 absent, then we can -niy wav that G
witn the griain 0 in Fia. 6.1, which 15 seen to be di
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nutation has some affinity to the oresent mecnod, copeora: 'y

1N the distinction between anqular momentum axte, fiqure ;
axis, and rotation ax1s5; this relation ha hoen potnted Lat T
py McClure (1973, sec.d). 1t 135 restricted tu a rigqid ecaron
and presents a less systematic and complete treatment of a |
aspecls, but numerical details sucn as the neglect of “erms
are more carefully considered (although several authors have
pointed out minoy errors in Woolard's treatment;. woolard's $
theory has beren a breakthrough and a classic. [t nas served '
for decades as the official reference for precession and
nutation of the International Astronomical ULnion. Mow,
however, it has been superseded by Kinoshita's theory for
a »igid earth and by other theories for elastic and liquid
core models.

4




RINOSHITA'S THEDRY OF PRECESSION AND HUTATION.

The most elegant formulation of analytical mechanics

15 Hamilton's tnecry. [t can be —ummarized as foliows, cf.

~d

{3

“Arnold, 197! or (Synae, 1960). Let a conservative mechani-

i

cal sy

w1

tem be descrined by n  independent variables g,

whnich are called "generalized coordinates”, let 1ts kinetic

enerqy be T and its potential energy U . Define the "ge-

neralized impulses” p_ by
= j,.T; 1/9_1\
Py “Q
wnora 5 = dy ,dt , and define the Hamiltonian function
Dy
= 7 o+ U . /‘9_2

enuial to the total eneray. Then the equations of mo%tion for

the dynamical system under consideration are Hamilton's canon-

i3l equations

da

gt oo

ot .

oo wmoyE €
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The quantities p,_ and g  dre called canonical varsable..
X 28 - -
Because of its formal simplicity, Hamiiton's inenry
possesses considerable theoretical advantaaes. Zanunical

variables are, therefore, frequently used in celestial nme-
chanics; ¢f. (Brouwer and Clemence, 1961, chapter <VII .

They have been introduced into the theory of precession and
nutation by H. Andoyer in 1911, cf. {(Andoyer, 1923, 19:~).
Recently, Kinoshita (1977) has used Andoyer variables to de-
rive the most accurate theory of precession and nutatiocn
available for a rigid earth. In this section we shall present

the theoretical foundation of Kinoshita's theory which i3

very simple whereas the details are enormously complicated.
Andoyer's variables are denvted by
G- =1, py = L,
9. = ) p. = G, (3-4"
q; = h , p; = H ,

so that coordinates and correspondina impulses are denoted oy
the same Tetter. Their definition is as explained by means
of Fiag. 9.1,

We use the two systems X.X,X., (inertial) and x. x-x:
(earth-fixed) as before (cf. sec.8). The ecliptic (fixed at

an epoch t,) corresponds to the X, X, plane, and the (instan-
taneous) equator to the x;x. plane. The point x., denotes

the figure axis which, in fact, for a rigid body coincides with
the z = x3; axis. The point M denotes the angular momentum

vector M . Note the change in notation for this vector which




FIGURE 9.1. The Andoyer variables n, g, 1 . The
point M denotes the anguiar momentum

vector.

elsewhere in this report is denoted by H . This cnange 15
necessary since we wish to retain Xinoshita's notation (9--7
whners 15 a canoanical variable. The eguation of M cor-
rasbonds to a plane which is normal to the anguiar momentum
inctor M .

Fig. 7.1 can be considered a superposition of Figs. 7.1
and 2.1 . with the important difference that now we look, so

by sueak, at the back of the unit sphere : the nodes N and




Q shown in Fig. 9.1 differ from the corresponding nodes in

the previous figures by 180

Apart from this difference, the Andoyer variable
corresponds tao Yy in Fia, 7.1 and the new variable 1 g
seen essentjally to be the argument of polar motion [- t -+
in eq. (2-16)). The sum g + 1 is nearly equal to the“Eu1er
angle : + 180°. The angles I and I in Fig. 9.1 are
equivalent to ﬁH and # in the previous fiqures.

Kinoshita also introduces the spherical distances

XN = h,_ Nxy = » (9-5)

corresponding, in Fig. 8.1. , to v and : , respectively.
Hence hf, If,a are the Euler angles (apart from 180 ) 1in
Kinoshita's notation.

Having thus introduced the canonical coordinates 1, 1,
h, we can easily find the corresponding canonical impulses
L, G, H by (9-1). First we have to find the kinetic energy
T . From classical mechanics (Arnold, 1978, p. 137) we know
the relation

T =270y (9-6)

where 7 is the inertia tensor (2-10), . 1is the rotation
™
vector, and .,  its transpose. The vector . can now be written

as follows:




This means that the total rotation is split up 1nto & rotatior

about tne X axis with speed n = dh/dt , into a rotation

about the anagular momentum a<is witn speed g , and & rotatior

about the X. axis with speed 1 . The vectors e ., e
and e, are the unit vectors of the directions around whnicn
the rotations are performed: e, is the unit vector of the

—Ii

L. axis (the angle h is counted in the plane normal to tnis

sy, e 15 the unit vector of the angular momentum vector

0

ax
M (the angle g is counted in the plane normal to M), and
e, is the unit vector of the «x, axis (for a similar reason}.

The differentiation of (9-6) with respect to 1 yields:

) ol 5] B 31 -t
= M e , 19-8)

because of the symmetry of C , using (2-5) with M instead
of H and (9-7), and denoting the inner product by a dot as
usual. fGther der‘vatives are obtained in the same way. The

cinanical impulses are now given by (9-1) with (9-4)

- em e
o
QT R
sl s e (9-9)
1
,]'_




Thus, L is the x. component of M [ G 15 the maan:tu-
de M of the anagular momentum vector itself since Tne
unit vector &, and M have the same direction, and =
1s the X: component of M

Briefly we may say that a canonical impulse 'L, 5,

or H) is the component of M normai to the plane along wni<rn

the corresponding canonical coordinate (1, a, or hj) 135 countec.

Using the angles I and J in Fig. 3.1 , we may

write

1

G = "M, L = Gcosd , H ficosl . 15-10;

If we know the canonical variables (1, g, h, L., G, Hj,
then the Euler anales can easily be computed: by (9-1C0} we
have

O
O
'
—
—

cosl = g R cosd =

the solution of the spherical triangle NPQ then gives
QN and NP , and finally

h. = XN = h + QN

14y

Q=NX::NP+]

We now need an expression of the kinetic energy 7T in
terms of canonical variables. In the body-fixed system x;x:x:
formed by the principal axis of inertia. the expression (9-6)

becomes  usina (2-10) and (2-11) ,
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Now we may write the Hamilitonian equations ‘J-21 1

our problem:

N U

at T T o gt T

g = __1 ,d_q = o A [ -17
a? ’G 3 dt a . 9 l/
sho iE dH -

St Ko dt n

where T is given by (9-16) and tnhe potential energyv J comes
from the attraction of sun and moon.

Equations (9-17) may be solved by standard perturdation
methods of celestial mechanics (Brouwer and (Clemence, 1961,
chapter XVII), using, as a first approximation, free motion with
U =0 . This free motion is discussed in detail, e.qg. 3n
‘Arknanaelsky, 1977). Andoyer (1926) used simple variation of
constants, whereas Kinoshita employs a cons:derably more sopni-
sticated technique f(method of Hori, cf. (Schneider, 1979, p.2001"

We cannot go into the details of this solution of the
forced motion, which are enormously envolved, and refer the
reader to (Kinoshita, 1977). The results are series for precessicn

and nutation of the angular momentum axis. the figure axis

+

‘for a riaid body coinciding with the 2z = x. axis), and the




rotation ax1s wnich have the form of tne series derived in
secs. /7 ana 8 . In fact, h = +. and "1 = - are
nutation in lonqitude and obliquity for tne anguliar mcmenz.um
axis, and similarity for the otner axes.

Kinoshita's results are accurate to 0.0001" . corre-

spondinc to 3 mm in position. Tney represent the mcst

N
!

complete and precise theory of precession and nutition availanie
for a rigid earth, especially because he developes a very
accurate expression for the lunisolar potential, and are tnus
a progress with respect to fWoolard, 1953). Kinosnita's theory
is also somewhat more accurate tnan the method described in
secs. 7 and 8, but this lTatter method is valid also for an
glastic earth whereas Kinoshita's method is restricted to a
rigid body.

The best wav to compute nutations for an elastic eartn

P

seems to apply the formulas of sec. & to compute differences

by applying these formulas first for the actual Love number
k and then for k = 0 (which gives rigid body results).

Since these differences are very small, they can be computed
quite precisely by the theory of sec. 8 . These differences

are then added to Kinoshita's rigid-body results to give




Y, n LA A

“relastic and elastic
A similar procedure is advocated by Wahr (1379,1440;

to take into account effects of the ligurd core. In fact,

such effects are considerably larger and more important tnan

effects of elasticity. Therefore, the remaining part ot tne
report will be devoted to the influence of the liguid cure,
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S PWNELEM FOR RISID 30DY ROTATION

s tderation o tne free rotation of a2 rigid body
Tue problem 15 9% basic theoretical importance
13 2 preparation for a detatied understanding
¢ tu he treated iater in this report,
Lr1ct o surseives to o a rotationally symmetric eartn

orincipal eguatorial moments of inertia are equal:

. 10-1
sase A = B can be treated in a similar way.
3lues tor Buler's tquations. 3y {2-13) we have
(C-A)e o, = O,

(C-Ah ., s = . [ 10-2

the maximum (polar) moment of inertia, and

. (10-20
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These two values constitute the two eigentrequenciles ‘eigenva .21,

proper values) for Eulerian motion considered as 3in eigenvauc
problem.

For the first eigenvalue - = 0 , eq. [(10-10 avyes
a = 0 and

w3 = b = const.

Sut aotherwise arbitrary. Thus also

which gives an arbitra

velocity of rotation

rotation axis.,

3«1al »pin mode (ASM) of (Smith, 1977).

Yore important 13 the second eiqgqenvalye

simple Qquadratic equation Tor -, ¢7 whton

sclutions obviouslv are

This

= const.. PLd-140

anstant increment o the anagular

W Ut changing the directicr of *n

[2?)

particu.ar proper mode of rotation is tie
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system x, is close to the body system x_ , then the roftati:an

from one system to the other can be effected by an "infinite-
simal rotation” described by small gquantities ., ,-.
rather than by the Euler angles which can be large.

For the x. axis we take a constant directicn

in inertial space which is close to the figure axis x. ;

this is possible since the x  axis has an aimost canstant
direction. Let the system x; x_  x. rotate with respect to
the inertial system with constant angular velocity ., such
that the axes x- and x_ never deviate much from their uni-
formly rotating counterparts «. and x

Thus the system x, x> x.  is indeed related to tne

inertial system X.X. X, in a prescribed simple way and can
equally well be used as a reference tor the motion of the
body in space.

In the auxiliary system x_  , 1ts rotation vector .-
with respect to inertial space nas, by its definition, the

components

L= 0. (10-16)

Since the deviation of the frame X from the system
X is small, the transformation from one to ‘the other can

he effected by a rotation matrix that is c¢lonse to the unit

matrix




it the components of the vec. or, x  and  x resresent

the coordinates of the same point in the respective systems.
The small matrix , representing an "infinitesimal

rotation", is skew-symmetric and may be expressed as

we may write (10-17) also in the form

X o= X - e X , {10-20)

wnere the cross denotes the vector product as usual.

Eq. {(10-20) holds for any vector and may be used tc

transform vectors from the X to the x, system. In particuiar
we have
= - ) (10-21"
oty ents the egrth's actual instantaneous rotation vector;




T : it o il

l it has, in the body frame x , the components .,  ,. .

{ entering in Euler's equationé (10-2). The vector

E comprises the components of the same vector in the system
x,” ;3 it should therefore not be confused witn the vector
<0 (10-16).

[n fact, we have

N

1}
[
o)
+
L
[
(=)
I
~o
~O

)

This can be seen in the following way. Cunsider a point at

rest in the body frame so that x = const. Then the differ-

entiation of (10-20) gives
0 = x:- 2 X Xo = =~ X,

Since the vector - is very small ("infinitesimal"),
we shall consistently neglect second and higher powers of 1t
retaining aoanly linear terms. Then the last term of (10-13) is
readily seen to be of second order and will be neglected. Thus

the last equation becomes
X 5= 8 x X3 . (10-23;

The comparison of (10-23) with (2-3) shows that =
is the angular velocity vector of the rotation of the system
x  with respect to the system xi” . Since the vector (10-1ln!
describes the rotation of xL' with respect to the inertial

system, the sum of these two rotation vectors gives the rotation




of tne boday frame with respect Tu ftne inertiil system, tnat 1i:

tne earth's actual rotation tor. Tnis proves (10-22;.

vec
The combination of (10-21) and (10-22) now yields

as uswual up to second-order terms. In terms of components

this 1is
N \ (10-2¢
.= +

Let usS now substitute these expressions in Euler's
equations (10-5). The result is

- - gl o+ gy < 0 s
~+ (’ - TE)) + vL = O . (10‘26/
=0 .

] This is again a system of homogeneous iinear differential
; equations with constant coefficients, which again can pe simpli- J

tied by using complex quantities. Putting

AL ]
i
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we get
wor (- s e v w = 0,
. = [10-22
SR = 0
The solution will again have exponential form:
wo= et c o= ocet (10-29
and the substitution into (10-28) gives
—osy o= (oo gp)oa t Tt T 0o,
-x23 =0,
or
35+ (25 0 )s - N = ,
- E L (10-30°
The condition of solution is the vanishing of the determinant,

giving the equation

whose roots are
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The first

SM: and Chandler wobble (CW), respectively.

Ncw the third eigenvalue 15 -y = =~ . The corresponaing

mode is by {(10-29)

;o= ot -0 ({10-35, ﬁ
{10-10) gives for : only the triviail solution

b , so that by {(10-7) and (10-9)

mode, therefore, the rotation axis within the body

cribed by

two

equations, namely (10-12) and (10-13), defining the axial spin

)

f rotation, bu

dif

asion ax1

onds to a

fer from zero, which corresponds to a tilt of .

S n

tilt

A«15 invariably fixed

rotates

w1th the

Same

space.
This 15 the tilt-over mode (TOM) of (Smith, 1977). It

rogts are the same as in the case of Euler's }

« »..) remains unchanged, as well as tne

t there 15 a nonvanishing w , that 1is,

ot the whole earth {with the rotation
to 1t) in space, so tnat the eartn

speed around a slightly different axis.

et e

- * . >x
B aanis sl ddlbh  uhleh | ani ) .




[t follows that the TOM dJoes not affect polar mosion
(the axis within the earth does not change)} but aftects nu-
tation (the axis changes periodically in space accourding o
(10-35)). [t is thus clear that the TOM does not snow up 1n
Euler's equation but appears oniy in the equations {1J-25.
describing spatial orientation,

Since any body (regardless of its internal constitu-
tion) freely rotating around a cer*ain axis, can also rotate
if the axis (with the body invariably attached toc) 15 ti1lted
in space, the TOM must exist for an arbitrary body, rigid,
elastic, liquid, even inhomogeneous. For a fluid earth mode!
and models with a liquid core, this mode has been pointed out
already by Poincare {1910, pp. 497, 508, 513;.

These proper modes, especially CW and TOM, wiil play
a basic role in the following sections.
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L1 APPLICATION TO NUTATION AND POLAR MOTION .
tﬂ‘
{
Tne eigenvalue theory described in the preceding section
11'ows an elegant treatment of precession and nutaticn. We
shnail apply metnods outlined by Smith {1977 and extendec 5 :
wanr (1473, 1930). i
de are usinag the same *wo coordinate systems as in j
sec. 1D ¢ x.x x. is the body-fixed system of principal axes 1
of inertia, and «x. x- x. is the uniformly rotating auxil:-
ary system. Tne two systems are related by

4p to terms of second order in +  as usual). The vector

describes tne infinitesimal rotation by which our two Ssystems

11 ffer.

The rotation of the earth is descrided by

dx -
el = T (11-Z
dt
P a'l vectors refer Lo the system  » . By 110-15" and [ 12-22°.
]

the rotation vector i75




eg. being the unit vectur of tne <. T

Since we U not oconsider changes 10 tae speed ot rotitiLr

we nave .. < U - . lthart 19, we disreqgard Tne axial suon

mode, ASM, see sec. 10). Thus

Complex notation will again be convenient . We put

oy

using + as a symbol for the gJuantity that has been denotn

by w in {(10-271.

We shall use this ccmpiex notation simultaneousl, witn
tnree-dimensicnal vector notation. We put

e- = e, , (11l-8>
that is, the number i represents rotation around tne .
axis by the angle of ++/2 ; e. and e dencte the unit vec-

tors of the x.  and «x. axes. Thus, 1 can simply be
interpreted as a rotation matrix; cf. (Duschek and Hochrainer,
1961, p. 222).

This is the only convention nee¢ded; everything eise

follows automatically. In particular,
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[
Coe e
gives tne connection between tne compler number  J1-3 0 3Nt

tne corresvonding vector (11-4). In fact, ov 11-% ,

1
(29
+

Y]

1
4
(T
v
o

'
!

identical to ‘11-4). A relation of the form 711-7 nolas faor

any vector which has no component along tne  x. dA1S. we

]
[val
S
D
—
jvY)
ot
T
«a

shall always use the same letter for two Quantit]

in this way: the vector 1s underlined, tne <orres

he]
(@]
o
wy

complex numpber is not underliined.

Assume now - to be an exponential
= et 1i-:
as in 10-29;, « and ., beinc constant cocmpiex numbers, Then
SRR \ “11-10

55 tnat differentiation i3 equivalent to multiplication by -

fa fact of basic usefulness, well known from spectral analysis

oo taat o the same relation alco holds for vectors.
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|
x

wo = -ins (11-20)

and 8 is (11-11). Thus (11-19) becomes

or
H = Cesz + iA(s + Q) 8 . {11-22)

This is in the body frame. In the xi” system we have by
(11-1)

HO = H+ 8 xH . (11-23)
To first order, by (11-15),

8 x H =3 x Caey = -iCan . (11-24)

From the last three equations there follows

0

H Cae; + (Ao + Ag - Cu) 3

Coey + iA(c - og) 8 , (11-25)

using the Euler frequency (10-6). The corresponding unit vector
finally is

sl 2 i

[ SP EN
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= ey 4 i Moog) (11-26)
~H = . —
Cu
Relation between ¢ and torque L . The infinitesimal

rotation 3 can easily be related to the torque L of the
lunisolar attraction. The basic equation is

e REY

all quantities referring to the xio system rotating with uni-
form velocity w, = 2ej;
(

Deriving (11-25) with respect to time gives
ﬂ‘ = iA(s - JE)S)_ = =As(s - CTE)Y_?_
using (11-11), and
on < ﬂ\ = LBq < ﬂo
= ]Aﬂ(’ - JE)E < i
= “iA,.‘,(" - "E)i X _e_?
= -Au(o - ag)
using {11-15). Thus (11-27) becomes
SA(g + ) (- I L‘ . (11-28)

We assume L to have the form
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v
L7 = Lo = Le (11-29)
lo |
where
L =L, + iL- (11-230)
as before, cf. (3-15), and L is an exponential
L = geldt*Y (11-31)
Then the complex numbers 6 and L are related by
6 = - L (11-22)
A(a+)(o=-0_)
E
This is equivalent to
1 ( 1 1 \
? s {0+Q - 73, JL , (11-33)

as is readily verified by computation.

This latter form shows very well the rescnance at the
proper frequencies -2 and oL ¢ if the external moment L
has a frequercy 3 equal to either of the two proper frequen-
cies, then the expression (11-33) will have a singularity. For
lunisolar effects, whose frequencies are grouped around the si-
dereal frequency o , the relevant resonance is at o = -. |
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which gives precession; cf. sec. 7, especially eq. (7-14)
(no lunisolar effect would have a frequency cE).

Eq. (11-32) or (11-33) provide the possibility to
express all our quantities in terms of the external torque

L . For instance, (11-25) and (11-32) give

HY = Cies - — e | (11-34)
Al € Ty o
which clearly shows the resonance at o = -Q . This shows

the importance of the "tilt-over mode" (TOM, cf. sec. 10)
for precession and nutation.

Nutation and polar motion. Nutation is the periodic

motion of any of the three axes: angular momentum axis H ,
figure axis F , rotation axis R , with respect to a fixed
reference axis for which it is natural to take the axis x3°
that is fixed in space; it has the unit vector e; . Thus
the nutation vector n of any of these is obtained from the
corresponding unit vector e by subtracting e;

Ng = Bg = &2
g = €p - €., (11-35)
Ny = &y -~ € >

the unit vectors being given by (11-13), (11-16), and (11-26).
Using the complex number n corresponding to the vector n
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by
n = ne

1 ’

we thus get

nR= 13—{4 N
nF = =15 ,
g -0
n = A(—__E._)t}
H

Co

Polar motion is treated in

the same way. It represents

motion around the figure axis e. - Therefore, polar motion

is defined by the vectors

Pr " & " &
(11-38)
EH=SH-SF’
in analogy to (11-35) (of course, p_ = 0). The expressions

F
(11-13), (11-16), and (11-26) give fnr the corresponding com-

plex numbers

P = —
R 0 >
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Their expression in terms of L Dby (11-32),

pR = - *lL____ s
AZ(s-3,)
(11-39")
pH = - >]L — Y
Cu!(o—rJE)

shows resonance only at the Chandler (or rather Euler) fre-

quency - , as it is natural for polar motion. The lunisolar

(tidally-induced) effect on polar motion is not resonant.
These relations are illustrated in Fig. 11.1, in which

the oriain 0 corresponds to the x3;° axis.

=

\
\ n, = OR p_ = FR
\ n. = OF
\ n_ = OH p. = FH

FIGURE 11.1 Forced nutation and polar motion of the
rctation axis R, the figure axis F, and
the angular momentum aris H

T J.,;;_' JITVRERELIR PO W NS !“.‘ A
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Comparison with previous formulas. In (5-13) we have
put

L = (C - A)z2° Bje-L(ﬂjt+dj) . (11-40)
We write this as

L = 7§ Lj (11-41)

]

with

L, = (C - A)nlaje'i‘“Jt*dj’ ' (11-42)

We shall apply the preceding results to each frequency separa-
tely and only at the end sum over all frequencies.

Thus we shall identify L in (11-31) with an LJ as
given by (11-42). The comparison shows that

g = -w. (11-43)

of course, vy = -Bj but this we shall not need.
Then (11-39Y) gives

(11-44)
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and using (11-42) and summing over j we o0btain

Bje'““y SR (11-45)

A
bt EPy (11-46)

which are identical to the forced part of (5-24) and (6-11)
for a rigid earth with k = 0.
For free Etulerian motion we have

F
L =0 |, LA (11-47)
Equations such as (11-32) or (11-39')give 0/0 and cannot be
used, but (11-37) and (11-39) remain valid with
3
' = el e’ (11-48)
for the proper mode CW according to (10-29) (< 1is the same
as w). For free polar motion, (11-39) gives
P = 1 S (11-49) ]

and the comparison with (5-24) shows that




T s A

97

s0 that

is the relation between free polar motion ,
With this
(6-11) with
(11-43), egs

sponding infinitesimal rotation =

equation of (11-39) gives the free term 1in
Nutation is handled in the same way.

(11-37) give

' n = =i 2.,
R:] .
n .= =% s
F,J J
A +
n = - (mj OE) 8.,
H,]J Ca J
where, by (11-32),
L.
9 = - J
J Adw_ (w_ +o_)
j' 3 E
since
g+ 0= ~w, + L = =~Auw

(11-50)

and the corre-
second
k = 0.

(11-51)

(11-52)

PR £
£ ialiant, itk

o
s i

4




= L= (11-52;

as usual. Substitution of (11-42) and summation over J gives

g -
- E ~i(w_t+i -
n = 1 A-_]_._H, Be j 3 ,
R T .
]‘_xuljku 1‘,5)
' t )
- ) - Lo -
n_. = i ——— B e l“j it (11-54)
) ) R RS
Jo3 E
- "EI ~ 5 N
n. =1 » - 1w .t+2 )
H = LRV IV 4 1 BJe ]
J ] E

To these forced terms, the corresponding free terms (11-37),
with - = e and  from (11-50), must be added. Then the com-
parison with (7-14), (8-7), and (8-11) shows that

foilysine = -inet”t (11-55)

for any of the axes R, F, or H ; the geometry of this cor-
resnondence between polar motion and nutation is the same as
in (8-9}.

The factor ~-i expresses a rotation by -90° {or +270° )
which has no deeper significance as in characterizes only the
choice of coordinate axes. The factor ei:t expresses, of

. . . [ p bl
course, the uniform rotation of the x; x. X, system, to

which n  refers, with respect to the inertial system, to whicn

P



and - refer.

In fact, the present method ofter, the simplect ancg
most direct derivation of polar motion and nutation for a
% rigid earth. For this particular case we get, in a consider-

ably simpler way, the same results as with the approach of

-

secs. 3 through 8. This latter approach, however, holds
for an elastic earth anc thuys is more general.
In sec. 13 we shall extend the present method to

an earth model with a liquid core.
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[ ;
¢

1

le.  POINCARE'S LIQUID CORE MODEL ;

Neither the rigid nor the elastic earth model are capanie '

of adequately describing earth tides and nutation. Tne effect ;

2f the liquid core must be taken into account. g

The oscillations of a rotating ellipsoidal sneil contain-
ing a nomogeneous liquid were first treated simultanecusiy =y
5ioudzry and oy Hough (1295). Thne most elegant treatment 1%
by Poincare (19103, His paper is so frequently used ana I.oted

fhat it nas become customary to speak of thne Poincaré moage’.

Since Poincarés method i¢ treateag in easily accessisie
textbooxks (tamb, 1932, p. 724, Melcnior, 19783, p. 122 we
snall nere only describe it in general terms, rather tTnan de-

riving it sten by step.

[

Let us refer the ellipsoidal shell to nrincipa. ave
xyZ , then tne inner ellipsoidal surface, whicr encloses *he

Tiquid-filled caviry, has the equation

]
+
)

}
—
ol
ro

]
—

By the change of varjiables

[ ER]

this ~urface i¢ transformed into the unit sphere

(12-

(O8]

e e bt il i, ctihantinsiiihialhl i dea
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Poincare considers a motion of the liquid such that, by the
transformation (12-2), it is transformed into a rotation of
the sphere (12-3). Thus, by (2-3), the velocity in the auxi-

Tiary x'y'z' system is

v oeox o= logxteg et (12-4)

if the corresponding rotation vector is . . Going back to
tne real system xyz by{(l12.2) and adding the actual rotation

- , we obtain

. a a
X = EX:Z T3 fowlz T oulY
b b i
J’ = 'g'/ X - EY‘Z + 'J3x = \AJ“Z s (12'3)
_C
2 = ley - Yo X t L1y T owoX

Here . represents the rotation of the earth with respect
to the inertial system, and . -expresses a rotation of tne fluidg
core with respect to the earth. {(The latter, of course, is a

strict rotation only after the formal transformation (12-2) to tne

auxiliary x'y'z' system, but for a nearly spherical earth,

this holds approximately also in the actual xyz system.)
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The motion described by the velocity components (12-5)
represents the simplest possible motion of an ideal fluid.
The velocity is linear in the coordinates «x,y,Z . This is
juite natural, cunsidering that such a linear dependence
somenow corresponds to a guadratic potential, and the luni-
solar potential i: the usual treatment (sec.l) is indeed qua-
aratic, namely a spherical harmonic of second degree.

The kinetic energy T is found by summing /‘i.e. inte-
Jrating) the square of the velocity over all macs elements
dm

2T = [ f{ix o+ ye

; + 2-dm
«=arth

Tne substitution of (12-5) and integration over the whole
earth {(1igquid core plus ellipsoidal shell) sields

H

27

Am;;‘ + Bu‘_j“’ + C..Jg" +

A0+ Bt o Cg e

v q R .

+ ZFA):'(; + ZGU. (ot 2Hw}.__3 . (12'6)

Here A,B,C are the principal moments of inertia for the

whole body, and

Al

-V Wy

AL

bl

» 1:_1'*.

SUPPSE
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! : > .2
AC = ?Mc(b +c) o, F o= 5M:bc R
B = lM (¢ + aY) G o= 2M ca {12-7)
c 5 ¢ d ! [ ) . )
.1 2 2 .2
C. = gMc(a + b)), Ho= gM.ab

M denoting the total mass of the liquid core.
(o4
The eguations of moticn may be made plausible in the
following way. Assume that the liquid core is absent and the
earth is a simple rigid body. Then the equations of motion may
be written

3T

w1

d _aT 3T 12-8"
at "“553 + wQSTU-S = L, (12-38)

Q2

plus two other equations resulting from cyclic permutation of
subscripts. In fact, in this limiting case we have A = B_ -
=C_=F=6=H=0, and the substitution of (12-6) into
(12-8) immediately gives Euler's equations (2-12).

[t will now be assumed that (12-8) also holds for the
general case of a liquid core. Since the vector « plays 4

role analogous to w , we may guess that the following equations

also hold:

IS RS R
SRS %z 3%




and two cyclically permuted equations. The change in sign in
these two equations are due to the fact that . , expressing
rotation of the core with respect to the body, has a similar
character as -. , which describes rotation of inertial space
with respect to the body. On the right-hand side of (12-9)
there is zero since external forces do not affect the relative
motion of the core.

A rigorous derivation of (12-8) even in the presence
of a liquid core is not difficult since it is simply equiva-
lent to the moment equation (2-2); c¢f. (Lamb, 1932, p. 724).
On the other hand, (12-9) may be derived using Helmholtz'
vorticity equation, which means going rather deep into fluid
mechanics; c¢f. (Lamb, 1932, p. 725) or (Melchior, 1978, p.124).

Our plausibility reasoning using arguments of symmetry
between . and i« can, however, be made rigorous. This has
been done already by Poincaré (1910, p. 484), using a theorem
on dynamical systems with groups of symmetry, earlier given
also by Poincaré (1901). This very elegant theorem is unfortu-
nately not found in standard treatises on analytical mechanics,
with the exception of (Whittaker , 1937, p. 43), (Loomis and
Sternberqg, 1363, p. 541), and (Abraham and Marsden, 1978, sec.
4.4), where similar theorems are presented; cf. also the re-
mark in (Klein and Sommerfeld, 1910, p. 162).
From (12-8) and (12-9), using (12-6), we derive immedia-

tely
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d
GE(Bol # Guu) = (CL e HL ) e AL e L) s L

] Cle-1d
d .
H(L *-H\())-JJ(/\u S N T (B £ 6,00 = L

|
d(f G B : |
gelfor # AL) v (6w B ) - (R e T -
d (6., + 8. Hey + C s (F S
FelGus + Boxz) + i (Hey crvi) - (P e A e D
C12-11
d - \
gr(Has + Coxs) + o Fep + Aciy) - (G + By = 0
For an ellipsoid of revolution we have
a =8, A =8, A =B, F =06  (12-12)
and furthermore, by (12-7),

H = Co . (12-13:

. Then the third equations of (12-10) and (12-11) give

é%(c wit Coxy) + Fluwix: - woxy) = Ly o,

(12-14)




—
~n
L]
—
>

As usual, we disregard L, which causes variation of rotational
speed but not polar motion (sec. 3). Thus we put Ly = 0 and
subtract botn eguations {12-14). The result is {the dot deno-
tes d/odt)

=0, .. = const. = .. (12-15)

“nen tne second eyuation of (12-14) becomes

Covo+ Foo o = o o)y = 0 . (12-16)
Now . arnd have a simiiar small order of magnitude as
and . , 50 that . 1s a guantity cf second order,

whicn we .natl consistently neglect in the sequel, as we did

‘n tne preceding sections. To this accuracy, (12-16) reduces to

= 0, .. = const. i (12-17)

wo o tiee

0. (12-13"

Uoing (12-12y, (12-13), (12-15), and (12-13), we may
arite the first twe equations of [12-10) and (12-11) in tne

torm




Again, complex notation will be convenient. We put

U:,..«'_'*‘T.*‘,

TR P (12-21)
L = L1 + 1L.. )

so that (12-19) and (12-20) take the simple form:

Ad + Fv - i(C - A)You + iFuv = L

Fa + A.v + iC.av = 0

These formulas generalize Euler's equations to the case of a
liquid core.

Eigenvalue problem, We proceed similarly as in sec. 10.

We put
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and

Then (12-22) reduces to

using

I I = A

as usual. The determinant must be zero:

wnich qives

With




T

¥ 0.

. oW
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which follows from (12-7), this becomes
A(z - cg)(Acr + Coa) = C (2A. - C.)(x + ) . (1¢-23)

We now introduce

(12-29,

the dynamical ellipticity of the core. By (12-7) this is also
equal to the core's geometric flattening (apart from negligible
second-order terms):

a2 - ¢ (a-c)(a+c) a- ¢, 0(-<) 3 (12-30;

0(:2) denoting terms of order ¢ as usual.

C =A(1+c¢), (12-31)

and
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since terms of second order in - will now consistentiy De
neglected.
Thus (12-28) becomes

or

As - (C = AYoai(y + Lo+ ci) = A s(: + 1) . 112-33)

The introduction of the principal moments of inertia for the

mantie

>
]
—
(@}
]
p=3
~—
—_
+
b
~
1
]
>
@}
1
—_
(]
]
p=3
~
)
«
—
[a]
]
(@S]
U

This equation is solved by successive approximations.
We first put . = 0 . Then the right-hand side is zero, and
the equation has the two roots

a (12-36)




As a second approximation we put

3, 0% gy o+ oery S B (lz-37) (
For 5 = 5- we have
/ )
Iy - - = = + A 21y - - = =
Am 1 (C A) Am \ RS (C A) Am s _

so that (12-35) becomes

-"wAm(J + fi) = = A(JL - YE)
Now € is the core flattening (12-29). Both ~,  , by {12-36,
and S by (12-25), have the same order of magnitude as
Thus the right-hand side has actually the order of . and
can be neglected. Hence, to our usual linear approximation
we have =-; = 0 and
R ) (12-38)
m

This is the frequency of the Chandler wobble (CW) for the
present case. [t differs from CW for the riaid body, (10-56),
by the replacement of A in the denominator by A , the

principal moment of inertia for the mantle.
A new feature is brought into the picture by the first

root. For = = -- we have




so tnat (12-35) becomes

or with (12-35),

with the solution

A o+ C - A
m

\ Mow, using (12-31) and (12-34)

= C - C_+0(z) =C_+0(c)

Since is multiplied by <« in (12-37), the term 0(:)
is multiplied with » to give a negligible second-order term.
Thus (12-39) becomes




and i g

WO o . e

s L ) (12-01,
n

This root has no equivalent in the rigid-body rotation.
In particular, it is not the direct equivalert of the tilr-
over mode although it is numerically very close. We snall
come back to this question at the end of the present section.
To give an idea of the order of magnitude, we take
(Melchior, 1978, pp. 129)

A o
£ :0.11 2 &,
A c

! {12-32»
H ) . 1
- 400
Then
C 1
o T 7T 1.12
C
c _ 1.12 _
LE; 50 © 0.0028 , ,
so that

5, = - 1.0028% . (12-43)
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115 1S the eigenvaiue for tne neariy Ciurna: ireeg

-
/

-

wobble (NDFW) according to tne terminology of [Smith, i9

‘- would represent a diurnal period;.

(8]

Tne comparison of the present treatment with sec. i
shows one comparable {though not numerically equal) eigen-
value, namely the CW wvalue . . Our present =:_, for 7ne
NDFW ., nas no equivalent in the case of Efuler's eguations;

e

yn tnhe otner nand, we have not yet obtained the

G corresponding to tne axial spin mode [(ASM) . [ts pnysica.
interpretation -- rotation about the same axis witn a
sligntlys different speed of rotation -- shows that it must

be quite general and not restricted to a solid pody. In tact,

we nave it also in the Poincaré model. The eguation [12-1%

exponential solution

o)
[V}
v
ct
=
D
0]

wnich aives

(12-44)

~man -




as another eigenvaiue. This AuM  value corre, nonds to
in sec. 10. In the present probliem, 1t c,uld be obtiines

also from 12-17).

Spatial position. 50 far, our espusiticn nas cor-
responded to the treatment of Euler's equation in Leo . 10,
5o that we have not yet obtained the tilt-over mode 3"

which should, however, occur 1n the present model 33 we'l,
for similar physical reasons as the ASM

We therefore proceed as in sec. 10, considering
spatial position. Since the mantle 15 rigid, the reasoning
leading from (10-17) to (10-25) holds unchanged <or the
Poincaré model, and the first twno eguations of 10-25, can
be combined in complex notation to qgive

- PR

u :V‘} + 14-\/#/ + ll.’_':‘s:
using (10-27) and (12-21)}. The substitution of this i

n
(12-22), and of the third equation of (10-25) into (12-1%"%,
gives

(12-36)

. . N -
The exponential form (proportional fto e ) for ., v, and

=, leads, as usual, to a system of homogeneous linear equa-

tions (if we put L = 0). The condition of vanishing deterni-




nant may be brought to the form

Al - (A #C) - Feo( o+ Y (o ) =0
r12-471
The solutions of this eguation are
= 0 LASMY
C - A
= - (CWY
™ r12-43:
= - (1 + ,CC_) (NDFW)
= - (TOM)
For - and . this is immediately obvious, and ~-- and

. are seen to be the same as {12-38) and (12-41) by noting
that the expression between parentheses is identical to (12-2f;

Although the modes 70/ and NDFW are conceptually
compietely different, their numerical closeness s So striking
that it 1s tempting to look for a physical interpretation of
NOFW in fterms of TOM. A hint is provided by noting tnat for
4 strictly spherical core, with . = 0 , we have -~ = -_ =
Thus, for = 0 , NDFW <coincides with T0M.

Now the tilt-over mode characterizes a tilt of the body
with respect to some external reference. In TGM in the
proper sense, such an external reference is inertial space. An
ideally fluid spherical core 15 mechanically completely inde-

pendent from the mantle ("decoupled") since, in the case of

e T et miticn. ioincitcitoctliaitt, bl | S

T ety
ABCRLE




spherical symmetry, a coupling could only be effected by

drag of friction, which is absent with an ideal fluid. Thus

the core, being independent of the mantle, can serve as an
external refererce for TOM into which thus NDFW degenerates
for a spherical core.

This decoupling is no longer true if the core is ellip-
tical. Due to the unsymmetry, there is now a mechanical
coupliing : the inertia of the core resists a rotation of the
shell. Thus we have an inertial coupling, or Poincaré coupling,

between core and shell which is zero for . = 0 and can be
expected to be proportional to ¢ by small - . This is indeed
borne out by (12-48) : the deviation of o, from 5. s
proportional to =«

A detailed study of the mechanical situation from a
somewhat different angle is found in (Toomre, 1974).

Proper modes are also called resonant. The presence
of two different but almost equal eigenvalues «- and -4
causes a significant deviation of the rotational behavior of
an earth with a liquid core from that of a rigid body, which
by Poincare {1910) has been called double resonance.
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13. LIQUID CORE EFFECTS ON POLAR MOTION AND NUTATION

Let us first introduce a convenient terminology:

U = - r T e body-referred rotation,

L core rotation,

O T I space rotation.
In fact, (.. , . ) express the position of the actual rotation
axis with respect to the body-fixed system of figure axes;
(. + < ) are a measure of the rotation of the core with re-
spect to this body frame; and (3, , ~.) characterize the rota-
tion of the body with respect to inertial space. The quantity
~. + i+. has been denoted by - in secs. 10 and 11 and by

w in sec. 12; we shall continue to use this notation.
The body-referred rotation u <characterizes polar motion.
In fact, the complex number m describing polar motion is

related to u by
u o= o.m o (13-1)

cf. (3-13) and (3-15}).

The quantity u is a solution of the basic equation
{12-22). The eigenvalues of this equation have been found to
be (12-38),

coe LA (13-2)




for CW, and

C C e
5 = =(1+ 5—C—).: t13-3,
m

for NDFW.
Thus the general free solution (without external forces)

has the form

The first term constitutes the usual Chandler wobble, the

second term is the nearly diurnal free wobble. The principal

contribution to polar motion, of course, comes from CW, and
it is an open question whether, for the real earth, the NDFW
has a coefficient «- which is significantly large to be
observable at present (Rochester et al., 1974; Yatskiv, 1980).
Practically much more important is the effect of the
NDFW on forced motion. Consider the inhomogeneous eguation

{12-22), the torque L being given by the expnnential (11-31),

L o= gel(7EY) | (13-5)

which represents a typical term in an expansion such as (5-12)
with ¢ = ey We put

setY = ik, L = iKe'™® (13-6)

and




,,_.
~o
<

Le 1ot .-
u = Ue . v = Ve . riz-7

The substitution into {12-22) witn F
leads to

"
I
o

~
—
~Na

1

(W8]
~o

~
o
=
a®
pul

PASU + TA SV - §/C - A).U + iA SV = iK

TA ~U + TA -V o+ G0 LY =0
or
A = (0 - A)ulU + A (-~ + )V = K,
N (13-8;
AsUov (Ao v C )V = 0
The solution by means of determinants gives
A -+ C0
e K, (13-9,
A
Vos—=— Kk (13-10;
A
where * is the determinant
= A - (C - A)y2 (A s+ C u) - A (s + ) (13-11)

Of principal interest is U which gives polar motion.
Let us compare U with the value U, which would correspond

e

to the same moment K if the earth were rigid. Then Euler's




equations or simply {(13-8) for A

F K
As - (C-A).

From (13-9), (13-11), and (13-12) we thus get

"Ao - (C-A)fz}(Aco + CCZ.‘) - A e+ )

-

[Ag = (C-A)uT(A_» + C )
szu(c +2)

(Ao - (C-A)2](A o + C u)

o)

This can also be brought into the form

where I js (12-25) as usual,
[f we change over to our usual notation for polar

motion, precession, and nutation, we must put




12¢

Then (13-14), on putting g = U /U , becomes

—

g =Y DR o (13-16,

=
S

! identical to eqg. (6-43) of (Melchior, 1978, p. 128};
note that Melchior's L has opposite sign.
Thus the amplitudes o7 forced polar motion, cComputed

for a rigid earth, must be multiplied by this factor to get
tne corresponding amplitudes for Poincarés model. Later in
this section we shall see that the factor U/U, also nolds
for the amplitudes of nutation of rotation and figure axes
{the nutation of the anqular momentum axis is the same as for

a rigid earth},
Numerical values are seen from the following tabie

wnich is taken from (Melchior, 1978, p. 129). q
,‘}y ; = U*/U

o ] J 4

Precession } 0 1 ]

Principal nutation . +2/6800 | 0.994 7

(18.7 years)  -./6800 = 1.007

| (

Annual nutation © +.,/365 E 3.458 |
; -u/365 | 1.062

Semiannual nutation f -./183 % 1.260

' -,/133 ; 1.083




Fortnigntly nutation VR

This factur tnus remains i tor
bhecomes - tur the proner frequencios
Je snown later.

Angular momentum and tor,ue. n

is easily extended to the Puincare mode)
still rigid in this mode! and th2 model
.

{

herefere tne xynematics, up Tu  1i-161
ha

What changes, is the dynami:Z,.
The angular memertum expression 11-174 15 now renla
Dy
H=C. D0, , Cl3-
where C is given by (11-1#. and D s the matrix
T F e J
D = Y 5 0 13-
0 0 H
The quantity D . i3 an aaditional anquliar momentum due *to
the motion of the l:igutd core Lamb, 19322, p. 724, eq.i’
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“In ract, the first equation of (12-22) is nothing but the
pasic equation H + . < H = L referred to body axes.)

Since .. - 0 by (12-18) and F = G in view of ro-

tational symmetry, we have

0 g H 0 0

f'(\ + 1, ;8 - Fvci . )
Nors ye nave used (1l-nt and C12-2150 Tnis ferm nac Lo de alled
' Li-Jl 0 ivana
r L . A i bRy R
e Body Trame. Do T SuLtem trl Deoomer D, L=t
! h 4
(X A . [ _ ’
‘ i
[ T A SRR TR ) 1 . i [ M LN -
' ;“']w'. FRal * P + '
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it 1s indeed a
by small terms

To find
mentum L , we

exponentiais

u = Ue
hecomes
o= -
Trus,
JP—
~ .
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unit vector since

of
the

mnay

()

second ovrder

relation between

proceed

as follows. Zguatiun  12-35 ¢ . »

mn

e dqrffers from 1 sniy 4

and v

ang tne angular mo-




Tnis is the desired refation between - and L . [t snows

tnat tne factor 1 , eq. (13-16) which converts u fr

(@]

m

the rigid case to the Poincaré model, likewise converts w

I

it could appear that w Dbecomes singular if -

]

altnougn this is not an eigenvalue. Such a singularity is
nut real, however, since I§ =0 for - = - . This beccmes

Ta2ar ot we express u o by {13-9) ; by the aid of [13-6,

Ny 1o-23, tnis becomes
A + C
s R 12-2¢
e determinant 0 can obviously be written in the form
. , - | NERTN
e e ot elaenvaiues T and CoF
r - ' il




and {(13-24) gives

An expansion intgo partial fractions gives expressions of tns

form
T b .
u = + ,
{13-30
W = + + N
anhere and . are constants and the eilgenvalues - . - |
-y are given by (12-48). Thus, polar motion u 15 oresonant

for CW and NDFW , and space rotation w 15 resonant *foq
W, NDFW , and TOM , as it should he.

The relation between M oand L s found as follews.

)

T o= e, = we- = = - . 13-

S5y [13-24), we may transform {1:-2

oAt oaws




|
e the 1IrsToequation of o l3-s 0 oon matiniying oy 2”
, - , ~ - o - i
ing tasing into daceount (13-6) ang C13-7, 0 may bhe written H
i
| - oy A + Jdvo= - L 13-%: {
moooing Ci3-320 and '13-33) ana noting o= A, W& ges
. o 1A -
- Le . - — I 12-24 ]
+
Ancon i tae same colation as o for o a rigid oody. nis con-
coem tea dndepesden e oof the relation between anguiar No-
et R ind tacgue L from the “nternal structure of
oo oredyy Cf 0 tne concluding remark of sec. 7.
GYatation and polar motion. Now it is straightforwarc
aeterd o tne “ormulas for precessicn J11-373 and polar motior
L= et e nresaent case. Since the first two retations
tee Duee iy ranematical, they continue to hold
T} i 1 Wy
L3-20 .
rooT= -
T qryes the nutation of the rotation axis Rooand of tne
A veis  F o0 The present o, of cource, differs from the
oot nad s ya ey oy “he factor o , according to (13-23

VR RER TI




Thus the amplitudes of nutation tor the rotation a<is and nne

figure axis Jdi"¥2r trom the corresponding rigid-body saluer

bv the factor

Ces

Cad

o

This 1s not true for the nutation of the anjular momen-
tum axis. From {12-22) and (11-3%) we qet
Al - =) A
n, = 1 W =V ol
o C
which differs from (11-37) by a term due to core motion.
Expressed in terms of L , we even gei exactly the same
nutation as in the rigid body case
il .
nH=—-— —_ \‘l
Cole + 2)

by (13-34).
The polar motion of the
kinematical, remains the same
. U
p:] 3 Wz?s

and consequently differs from
factor g

the

The polar motion of
ferent from (11-39;

rotation axis, being purely

as (11-39)

the rigid-body case by the

angular momentum axis is di

o o ca s s e

f-

(W)

o

.

DS S5 Y ¥ S G




pr’ - nfi - nx
S L Ay (13-39
C C..
or, by (13-38)
, - A A / - \
e T T PR YT Y $13-40;

Here v obtained from (13-10), which by (13-6) and (13-7)

becomes:
vos oo —— L. (13-41)

These relations are illustrated by Fig. 13.1, which
is tne extension of Fig. 11.1 to the Poincaré model. It
snows that the rotation axis R is no longer close to the

anqguiar momentum axis H

Free motion. In the absence of external forces, for
L = 0 , the basic equations (12-22) have the solution:
U tl('_’] + tPi ' N
(13-42)
y o ! N al! t :
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FIGURE 13.1 Forced nutation and polar motion of the rotation
axis R , the figure axis F , and the angular

mcmentum axis H

cf. (13-4) and (12-23) . The coefficients <, are related o
the corresponding coefficients ay (i = 1,2) by (12-24) with
=T, Since the determinant vanishes, we may take either
of the two equations of (12-24). We take the second, with

F = A

cC
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A‘LlL+<A tiﬁ-Ck)‘L:O
or
e+ (L) =0
oo+ (1 o+ )2 =0
with

Egs. {13-44) are satisfied if

with arbitrary complex constants + and

seen to be the general solution. Thus

u o= (1 + '1)‘e'd (e et ?

represents the general free solution,

Important 15 the order of magnitude.
(13-2) and (12-342) we qet

Ct LGN
eI Te 0,

(13-44

(13-45)

(13-4%6)

; this 1s easily

(13-47)

From (13-45) with




{
i
i
I

C - c-A . C-A ., 1

ot e oz o= I = PR 4 ,--&_:O(’I S

A - A A 300

m »

and similarly using (13-3) and (12-21)

<o = 1 9_‘-_ = 1 + ‘C[__C_m =
i 1 + = 9 1 + «
C..
C ‘.
= - (1 4+ 2 - ¢ ) = -1 - = ¢ {13-48,
Cm Lm !
Hence, approximately,
uz ver?iY b o(e)uettlt
{13-39)
v 2 0(e)rer?tt 4 etizt

This shows that polar motion, (u) comes principally from CW
(frequency o;) but core motion (v) is caused mainly by NDFW

(frequency o2).

The corresponding free value of spatial rotation
is given by (13-24) where ¢ = o, or . , depending on the
mode. Thus from (13-47) we get




Now free nutation can be computed by (13-35) and {13-36)
using (13-47) and (13-50), and free polar motion is obtained
in the same way from {13-33) and (13-40).

It is very instructive to consider the NDFW only.
Tnen, putting

et = h (13-51;

and using (13-48) and (13-3) we get from (13-47) and (13-50)

A

u = - 9‘;h R
C
m
vooo (1 o+ %- yh (13-52,
“m
C.
TW = -— n
€

We recall that the core tlattening

ST O
f 400
and that for the moments of inertia of core and mantle we

have




Ca
C

This shows

are both very large.
In particular we have for this mode by

(13-40)

o

0.

1

3

that the ratios

R
C

(@]

_m
C

[ IR =)

>

C

C

1

[

W

i

A

A

— o+ =
L

C

(13-38) and




10 To Tooana

(%)
1

The first term on the right-nana s.de 12 ¢

can be neglected with respect to the very large se&cond

term. Furthermore, A /C =1 + 0(.) . Thus
P C
CHOo L os L ogqo (1
C:
Pa 3
Hsing (13-3) this can also be written
v
H /
. —— \1
PR +
Tnis simple relation permits a kinematical interpretation

terms of body- and space-fixed cones according to Poinsot
fRochester et al., 1974},

The nearly diurnal free wobble 1s illustrated by Fi
13.2, which in view of (13-53) shows that the angle  be
the angular momentum vector and the figure axis is about
times larger than the angle  Dbetween the rotation axis
(vector ») and the figure axis. Cf. also (Toaomre, 1974,
{Rochester et al., 1974) and (Yatskiv, 1980):; Rocnester et

have

(O8]
1
o
£

in

g.
tween
400

ai.




FIGURE 13.2 The nearly-diurnal free wobble.

which differs from (13-53) only by 0(.) which we have disre-
garded.

The same phenomenon may also be looked at from a <iignt-
ly different angle. In the absence of external forces, the
angular momentum H retains its position in space ; the nuta- ?

tion of the anqular momentum axis is zeron

n. =0 . (13-56) L |

This is evident from (13-37) since the denominator differs from

zero if =+ = 5. or 5. , and *the numerator is zero 1 f L = 0




1

T othe neariy diurnal tree wobble there 2x13%s 3 Curresponging
nutation wnich 15 abogt d00 thiymes Jarger. Such a nuatation ra:
not ye* been abserved, whicn 35 another indicaticn tnat tne

ampittudse of tne  NDFW  for tne eartn must te very small.

3 Compiitation of formulas. The basic quantities for free

' mution are buody-reterred veotation u , core rotation v o, and

space rotation Ww . which we collect first:

. t g '
1 (1 ¢ ) e S B )..e .
+ + A !
v - 6 - Lo , {13-53
I+ . Dot 1+ . it
o - - L e N <
+ +

Then the freo polar motion of the rotation axis R and the

anqular momeatum as1s H o bhocome
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